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Abstract
The stochastic dynamics of a classical parametric oscillator driven by coloured
noise with exponential correlation is studied both by analytical and numerical
methods. The critical strength of the parametric modulation at which the
motion of the oscillator becomes unbounded, and the dependence of this
critical strength on the magnitude and the correlation length of the noise,
are investigated. The results show that the critical strength does not depend on
either the strength or the correlation length of the coloured noise, but that the
squeezing induced by the parametric oscillation is enhanced by increasing the
correlation length of the noise.

PACS numbers: 02.50.Ey, 05.40.Ca, 05.45.−a

1. Introduction

Various studies of stochastic dynamical systems driven by coloured noise have been carried
out. In previous works on the effects of coloured noise, several methods have been developed
for characterizing stationary processes described by first-order nonlinear stochastic differential
equations, including the unified coloured noise approximation [1], continued fraction methods
[2] and the path integral method [3]. However, little work has been done on non-stationary
stochastic processes, except for the case of parametric oscillators driven by multiplicative
coloured noise [4–6]. Recently, Zerbe et al [7] studied the stochastic dynamics of dissipative
Floquet oscillators driven by Gaussian white noise (GWN). This analytically solvable non-
stationary system exhibits the squeezing of noise induced by the frequency modulation
in a Brownian parametric oscillator, which has potential applications in electromagnetic
interferometers used for noise reduction in communication networks. In fact, studies based on
a stability analysis of the Floquet spectrum have shown that noise reduction can be achieved
by redistributing the thermal noise [8–10] and that this redistribution can be realized by
modulating the frequency of the Brownian oscillator [7, 11].
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The noise source describes the heat bath of the irrelevant variables which are assumed to
have relaxed to equilibrium, independent of the dynamics of the system variables. As can be
seen from the generalized Langevin equation, the fluctuations around the system induced by
the surrounding heat bath have a correlation of finite time due to a built in delay or inertial
effects [12]. In the present paper, we focus on the effect of coloured noise with an exponential
autocorrelation. This type of noise is a second-order approximation from the viewpoint of
the fluctuation–dissipation theorem [13]. Several previous works including Leiber et al have
shown that the stationary distribution deviates from the Maxwellian for the system driven by
coloured noise [14–16]. Our purpose is to extend our understanding of the effect of external
coloured noise to the system governed by a non-stationary stochastic process. In section 2,
we present the stochastic model driven by coloured noise and formally derive the probability
distribution of a non-stationary Fokker–Planck process based on the Green function approach.
In section 3, the equations of motion of each element of the covariance matrix are derived
and the time-dependent behaviour of the coordinate variance σxx is studied by applying three
different numerical techniques. In section 4, the effect of coloured noise on the squeezing
induced by a parametric oscillation is studied both by the perturbation technique and by the
full numerical method. Section 5 examines the instability of the oscillator by calculating the
Floquet spectrum of the corresponding Fokker–Planck operator, and compares this system
with that of the system driven by GWN. Our conclusions are presented in section 6.

2. Model and solutions of basic equations

Let us start with the following equation describing the stochastic dynamics of a dissipative
Floquet oscillator driven by coloured noise:

ẍ + γ ẋ +
[
ω2

0 + 2ε cos (2t + ψ)
]
x = c(t). (1)

Here ε is the amplitude of the parametric modulation, γ and ω0 are the damping constant and
the natural frequency of the harmonic potential, respectively, and c(t) is a random external
perturbation. In the absence of noise, equation (1) can be transformed to the standard form of
the Mathieu equation by substituting x = e−γ t/2y.

ÿ +

[
ω2

0 − γ 2

4
+ 2ε cos (2t + ψ)

]
y = 0. (2)

The Mathieu equation cannot be solved analytically. However, Floquet theory tells us that the
solution of equation (2) can be expressed as a linear combination of two periodic functions
multiplied by exponential cofactors.

y1(t) = exp(iν(t + ψ/2))p

(
t +

ψ

2

)

y2(t) = exp(−iν(t + ψ/2))p

(
−t − ψ

2

) (3)

where ν is the Mathieu characteristic exponent and p is a π -periodic function. Then the
solution of equation (1) in homogeneous form (i.e., in the absence of noise) xh(t) is as follows:

xh(t) = β1 exp([iν − (γ /2)]t + iν(ψ/2))p

(
t +

ψ

2

)

+ β2 exp(−[iν + (γ /2)]t − iν(ψ/2))p

(
−t − ψ

2

)
. (4)
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The above solution helps us to construct the formal solution of equation (1) by applying the
Green function expression of the following form:

x(t) = xh(t) +
∫ t

0
Gx(t, t

′)c(t ′) dt ′. (5)

Here Gx(t, t
′) is defined as

Gx(t, t
′) = [φ1(t)φ2(t

′) − φ1(t
′)φ2(t)] exp(−γ (t − t ′)/2) (6)

where φ1 and φ2 are two independent solutions of equation (2) satisfying the initial conditions
φ1(0) = 0, φ2(0) = 1, φ̇1(0) = 1 and φ̇2(0) = 0.

As is well known, when c(t) is a GWN 
(t) satisfying 〈
(t)
(t ′)〉 = 2Dγδ(t − t ′), the
probability distribution of an integrated dynamical quantity defined as R = ∫ t

0 f (t, t ′)
(t ′) dt ′

has a Gaussian distribution with variance σ 2 = 2Dγ
∫ t

0 f 2(t, t ′) dt ′. Extending the present
formalism to the case of coloured noise is straightforward. The external perturbation c(t) is
assumed to be Gaussian coloured noise with zero mean and exponential-type correlation.

〈c(t)c(t ′)〉 = Dγ

τ
exp(−|t − t ′|/τ). (7)

Then the motion of c(t) is governed by

ċ = − 1

τ
c +

1

τ

(t). (8)

Solving equation (8),

c(t) = 〈c(t)〉 +
1

τ

∫ t

0
Gc(t, t

′)
(t ′) dt ′ (9)

where 〈c(t)〉 = c0 exp(−t/τ ) and Gc(t, t
′) = exp(−|t − t ′|/τ). Substituting equation (9)

into equation (5) and rearranging the order of integration, we obtain the following formal
solution of x(t):

x(t) = 〈x(t)〉 +
1

τ

∫ t

0

[∫ t

t ′′
Gx(t, t

′)Gc(t
′, t ′′) dt ′

]

(t ′′) dt ′′ (10)

where 〈x(t)〉 = xh(t) +
∫ t

0 〈c(t)〉Gx(t, t
′) dt ′. In addition, we obtain the formal solution of

v(t) = ẋ(t)

v(t) = 〈v(t)〉 +
1

τ

∫ t

0

[∫ t

t ′′

d

dt
Gx(t, t

′)Gc(t
′, t ′′) dt ′

]

(t ′′) dt ′′ (11)

where 〈v(t)〉 = xh
′(t) + d

dt

∫ t

0 〈c(t)〉Gx(t, t
′) dt ′. σxx, σxv and σvv can be obtained from

equations (10) and (11) (see equation (17)). Then the probability distribution function
W(x, v, t) can be written as

W(x, v, t) = 1

2π
√

σxxσvv − σ 2
xv

exp

[
− z

2
(
σxxσvv − σ 2

xv

)
]

(12)

where z = σvv(x−〈x〉)2 −2σxv(x−〈x〉)(v−〈v〉)+σxx(v−〈v〉)2. The evolution of the process
described by the variable (x, v) explicitly depends on the initial value of the noise variable,
indicating that the stochastic process is non-Markovian. This non-Markovian nature can be
easily eliminated by extending the dynamical variables (x, v) to (x, v, c). Then the probability
distribution function W(x, v, c, t) satisfies the following form of the Fokker–Planck equation:

∂

∂t
W(x, v, c, t) = LFPW(x, v, c, t) (13)
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where

LFP = − ∂

∂x
v + α(t)

∂

∂v
x + γ

∂

∂v
v − ∂

∂v
c +

1

τ

∂

∂c
c +

Dγ

τ 2

∂2

∂c2
(14)

and α(t) being ω2
0 + 2ε cos(2t + ψ). The Fokker–Planck process in (x, v, c) can be uniquely

described by a trivariate normal probability distribution.

W(x, t) = 1√
(2π)3 det σ

exp

[
−1

2
(x − x̄)T σ−1(x − x̄)

]
(15)

where x = (x, v, c), x̄(t) = (〈x(t)〉, 〈v(t)〉, 〈c(t)〉) and

σ(t) =

σxx(t) σxv(t) σxc(t)

σxv(t) σvv(t) σvc(t)

σxc(t) σvc(t) σcc(t)


 . (16)

From equations (9), (10) and (11), the elements of the covariance matrix σ(t) can be obtained
as follows:

σxx = 2Dγ

τ 2

∫ t

0

[∫ t

t ′′
Gx(t, t

′)Gc(t
′, t ′′) dt ′

]2

dt ′′

σxv = 2Dγ

τ 2

∫ t

0

[∫ t

t ′′
Gx(t, t

′)Gc(t
′, t ′′) dt ′ ·

∫ t

t ′′

∂

∂t
Gx(t, t

′)Gc(t
′, t ′′) dt ′

]
dt ′′

σxc = 2Dγ

τ 2

∫ t

0

[∫ t

t ′′
Gx(t, t

′)Gc(t
′, t ′′) dt ′ · Gc(t, t

′′)
]

dt ′′

σvv = 2Dγ

τ 2

∫ t

0

[∫ t

t ′′

∂

∂t
Gx(t, t

′)Gc(t
′, t ′′) dt ′

]2

dt ′′

σvc = 2Dγ

τ 2

∫ t

0

[∫ t

t ′′

∂

∂t
Gx(t, t

′)Gc(t
′, t ′′) dt ′ · Gc(t, t

′′)
]

dt ′′

σcc = 2Dγ

τ 2

∫ t

0
G2

c(t, t
′) dt ′.

(17)

It can be easily shown that the probability distribution W(x, v, c, t) is reduced to that for
the GWN system in the limit of τ → 0. This is due to the fact that σxc and σvc vanish for
τ → 0, σcc ∼ Dγ

τ
; as a result, the dynamics between x and c, and v and c become decoupled

and integration with respect to c can be performed trivially, resulting in W(x, v, t).

3. Dynamical behaviour of coordinate variance

From the formal solutions for x(t), v(t) and c(t) expressed in terms of the Green function,
the elements of the covariance matrix can be easily determined. However, a better approach
is to utilize ordinary differential equations governing the motion of σxx . Below we derive the
equation of motion. The following closed-system set of coupled differential equations for the
elements of the covariance matrix can be obtained with the help of the well-known relation
between the noise-averaged dynamical quantity and the Fokker–Planck equation in the adjoint
form [18]:

d

dt
〈f (x(t), v(t), c(t))〉 = 〈

L†
FPf (x(t), v(t), c(t))

〉
(18)

where L†
FP is the adjoint of the operator LFP expressed as

L†
FP = v

∂

∂x
− α(t)x

∂

∂v
− γ v

∂

∂v
+ c

∂

∂v
− 1

τ
c

∂

∂c
+

Dγ

τ 2

∂2

∂c2
. (19)
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Figure 1. Variance σxx as a function of time at ω2
0 = 1, D = 1, τ = 1, ψ = 0 and ε = 0.5.

The values obtained from equations (20) are depicted as a solid line, while circles and squares
denote the results obtained from integration of the Green function (equation (17)) and numerical
simulation of the stochastic differential equation (equation (21)), respectively.

Then the coupled differential equation for each element of the covariance matrix can be
written as

˙σxx = 2σxv

˙σxv = −α(t)σxx − γ σxv + σxc + σvv

˙σxc = − 1

τ
σxc + σvc

˙σvv = −2α(t)σxv − 2γ σvv + 2σvc

˙σvc = −α(t)σxv −
(

γ +
1

τ

)
σvc + σcc

σ̇cc = − 2

τ
σcc +

2Dγ

τ 2
.

(20)

Numerical solutions of equation (20) together with σxx(t) obtained from numerical integration
of equation (17) expressed in terms of the Green function are plotted in figure 1. The numerical
integrations in both cases were carried out by a fourth-order Runge–Kutta algorithm with a
time step of �t = 10−3. They show perfect agreement with each other. It is of interest to
perform direct numerical simulations utilizing the stochastic differential equation. For the case
of coloured noise whose dynamics is governed by equation (8), equation (1) can be rewritten
in the following form:

d


x

v

c


 =


 0 1 0

−α(t) −γ 1
0 0 −1/τ





x

v

c


 dt +


 0

0√
2Dγ/τ


 ξt dt (21)

where the ξt are standard Gaussian random variables for each t. The constant nature of the term√
2Dγ/τ enables us to use the explicit order 3.0 weak scheme [17] in a straightforward manner

for the simulation of equation (21). σxx was evaluated over the numerically constructed 105

sample path. The simulation results are also depicted in figure 1. Figure 1 clearly shows that
the bounded motion of σxx becomes asymptotically periodic in the long time limit irrespective
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Figure 2. Critical strength of the modulation εcr as a function of the friction coefficient γ for
τ = 1 and D = 1.

of the initial conditions. On the other hand, the motion of σxx becomes unbounded for values
of ε greater than εcr. Investigation of the dependence of σxx on the system parameters D, τ

and γ reveals that ε does not depend on D and γ , whereas it grows as γ becomes larger (see
figure 2). Equation (4) reveals that the point at which xh(t) becomes unbounded is identified
by the relation

Im ν = ±γ

2
. (22)

The physical parameters governing the Floquet parameter ν are ε, γ and ω2
0. Thus, for fixed

values of γ and ω2
0, ν is a function of ε only and the critical value of ε which satisfies

equation (22) can be easily obtained using Mathematica. It is found that this critical value
of ε is identical to εcr, which confirms that when σxx no longer has an asymptotic stationary
solution, the motion of xh(t) simultaneously becomes unbounded.

Next, the phase-averaged stationary long time values of σxx,
〈
σ st

xx

〉
ψ

, are calculated

numerically as a function of ε for different values of τ and ω2
0 and the results are depicted

in figures 3 and 4, respectively. Below 〈 〉ψ indicates an average with respect to the phase
assuming that the phase is uniformly distributed. The general trend of

〈
σ st

xx

〉
ψ

with varying ε

is similar to that found for the GWN case (see figure 3), except that the suppression of the
variance is enhanced as τ increases (see figure 4). However, as mentioned above, the value of
εcr does not change as τ increases.

4. Analytical approximation in the small ε limit

As shown below, an analytical solution of
〈
σ st

xx

〉
ψ

can be obtained up to O(ε2) for small values of
the modulation ε. From equation (20), the following coupled third-order differential equation
for σxx and σxc can be obtained upon elimination of σxv, σvv, σvc and σcc:

...
σxx + 3γ ¨σxx + 2(γ 2 + 2α(t)) ˙σxx + 2(α′(t) + 2γα(t))σxx − 6 ˙σxc − 4

(
γ +

1

τ

)
σxc = 0

¨σxc +

(
γ +

2

τ

)
˙σxc +

(
1

τ 2
+

γ

τ
+ α(t)

)
σxc = Dγ

τ
.

(23)
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Figure 3. Phase-averaged displacement variance 〈σ st
xx〉ψ as a function of the modulation ε at

γ = 1,D = 1 and τ = 1 for different values of the angular frequency ω2
0 = 0.1, 0.3, 1.0.

Numerically computed values are depicted by dotted lines, while solid lines show the analytical
approximation for small ε.
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  GWN
  τ = 0.2
  τ = 0.5

Figure 4. Phase-averaged displacement variance 〈σ st
xx〉ψ as a function of the modulation ε at

γ = 1,D = 1 and ω2
0 = 0.1 for different values of the correlation length τ = 0.2, 0.5. The solid

line depicts the result of the GWN system.

Assuming that the solution is bounded, σxx is π -periodic in the asymptotic region t → ∞.
Then σ st

xx(t) and σ st
xc(t) can be expressed as a Fourier series

σ st
xx(t) =

∞∑
n=−∞

an exp(in(2t + ψ)) σ st
xc(t) =

∞∑
n=−∞

bn exp(in(2t + ψ)). (24)

The recurrence relations for an and bn, can be obtained as follows:

εA−
n an−1 + Anan + εA+

nan+1 + Bnbn = 0

εbn−1 + Cnbn + εbn+1 = Dγ

τ
δn0

(25)
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Figure 5. Plot of ω2
0 as a function of γ satisfying �xx = 0 for various τ (see equation (28)). The

area under each curve represents the region for which 〈σ st
xx〉ψ has a minimum.

where

A−
n = γ + (2n − 1)i

An = γω2
0 − 3γ n2 +

(
2ω2

0 + γ 2
)
ni − 2n3i

A+
n = γ + (2n + 1)i

Bn =
(

γ +
1

τ

)
+ 3ni

Cn = ω2
0 − 4n2 +

1

τ

(
γ +

1

τ

)
+ 2n

(
γ +

2

τ

)
i.

(26)

Approximating the recurrence relation for σ st
xx(t) and σ st

xc(t) by the continued fraction in the
small ε limit, we obtain the following solutions:

〈
σ st

xx

〉
ψ

= D

ω2
0

· 1 + γ τ

1 + γ τ + ω2
0τ

2
+ �xxε

2 + O(ε4) (27)

�xx = 2D

ω2
0

· 1 + γ τ

1 + γ τ + ω2
0τ

2
Re

(
A+

0A
−
1

A0A1
+

1

C0C1
+

A+
0B1

A1B0

)
. (28)

As the strength of the modulation goes to zero (ε → 0),
〈
σ st

xx

〉
ψ

approaches the coordinate
variance of a harmonic oscillator driven by exponentially correlated coloured noise,
D

ω2
0
· 1+γ τ

1+γ τ+ω2
0τ

2 , as the correlation length of the noise τ goes to zero. This coordinate variance,

in turn, is reduced to that of a harmonic oscillator driven by GWN, D

ω2
0
.

The condition for
〈
σ st

xx

〉
ψ

to have a minimum is �xx < 0. To find the region of ω0

which satisfies the condition that
〈
σ st

xx

〉
φ

has a minimum, we depict the region of ω2
0 satisfying

�xx < 0 as a function of γ for various values of τ . Figure 5 clearly shows that τ not only
enhances the suppression of the coordinate variance but also expands the region which satisfies
the condition for

〈
σ st

xx

〉
ψ

to have a minimum.
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5. Stability analysis based on the Floquet spectrum

Finally, we consider the Floquet eigenvalue µ defined from the Fokker–Planck operator. A
differential operator that varies periodically with time implies a Floquet-type solution in which
the Floquet exponent governs the stability of the system. Since the Fokker–Planck operator
LFP is π -periodic, the probability density function W(x, v, c, t) can be expressed as a linear
combination of normal solutions.

W =
∑

µ

cµ e−µtpµ(x, v, c, t) (29)

where pµ is a π -periodic function and µ is the Floquet eigenvalue satisfying the following
eigenvalue equation:(

LFP − ∂

∂t

)
pµ = −µpµ. (30)

Transforming to an adjoint form, we obtain(
L†

FP +
∂

∂t

)
p†

µ = −µp†
µ (31)

where p†
µ can be expressed as a polynomial with respect to x, v and c. The trivial solution

is p† = 1 for the eigenvalue µ = 0. The first nonzero eigenvalue can be obtained from
p† = a1(t)x + a2(t)v + a3(t)c. Since the Fokker–Planck equation is invariant under parity
transformation, p† does not contain a constant term. p† satisfies equation (31), therefore

ȧ1 + µa1(t) − α(t)a2(t) = 0 (32)

ȧ2 + (µ − γ )a2 + a1 = 0 (33)

ȧ3 +

(
µ − 1

τ

)
a3 + a2 = 0. (34)

Substituting equation (33) into equation (32), we obtain the following differential equation
for a2:

ä2 + (2µ − γ )ȧ2 + [µ(µ − γ ) + α(t)]a2 = 0 (35)

and a2 and a3 can be written as

a2(t) = c1 exp(iν(t + ψ/2)) exp(−(µ − γ /2)t)p

(
t +

ψ

2

)

+ c2 exp(−iν(t + ψ/2)) exp(−(µ − γ /2)t)p

(
−t − ψ

2

)
(36)

a3(t) = c3 exp(−(µ − 1/τ)t) −
∫ t

0
exp(−(µ − 1/τ)(t − s))a2(s) ds (37)

where ν is the Floquet parameter in equation (4). Since a2(t) and a3(t) are π -periodic, the
following three cases are possible for µ:

µ100 = −iν +
γ

2
µ010 = iν +

γ

2
µ001 = 1

τ
. (38)

It is then straightforward to show that the Floquet spectrum µnml for each value of n,m

and l is

µnml = nµ100 + mµ010 + lµ001 (n,m, l = 0, 1, 2, · · ·) (39)
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where µ100, µ010 and µ001 are defined in equation (38). Equation (38) defines the relation
between the Floquet eigenvalues of the Fokker–Planck operator and the Floquet parameter
that determines the stability of the damped Mathieu equation. µ100 and µ010 govern the
stability of the system and they remain the same as those for the GWN system. The additional
exponent 1/τ controls the decreasing rate of the amplitude of the noise variance σcc. Hence the
correlation length of the noise does not change the condition for the stability of the solution.

6. Conclusions

We have developed a general scheme to study the stochastic dynamics of a linear parametric
oscillator driven by coloured noise. It was our intention throughout the analytical and
numerical investigation to understand the change in dynamical behaviour as the external
noise changes from white to coloured. Specifically, we found that the suppression of the
coordinate variance

〈
σ st

xx

〉
ψ

increases with increasing correlation length of the noise τ . On
the other hand, the critical strength of parametric modulation at which the motion becomes
unbounded is independent of τ .
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